Allelochemicals of Three Amazon Plants Identified by GC-MS

V. Sotero, P. Suarez, J.E. Vela, D. García de Sotero, Y. Fujii

Abstract— The aim of this study was to realize the evaluation of the allelopathic activity of 83 vegetable species from Allpahuayo - Mishana Reserve in Peruvian Amazon, and to determine the main polar components of three species of that showed high activity. Leaves samples were collected, which were subjected to elution for two weeks to get the methanol extracts e to test the inhibition of the roots of pre-germinated seeds of Lactuca sativa. These extracts were dried in a rotary evaporator and the product subjected to column fractionation opened using silica gel No. 100, using as mobile phase methanol and obtaining the fractions according to the appropriate retention time, and meet the fractions containing similar molecules through analysis of thin layer chromatography; which were tested to evaluate their allelopathic activity against pre-germinated seeds of Lactuca sativa. In this way it was found that three species showed activity in extracts, these were the Iryanthera ulei, Duroia hirsuta and Theobroma obovatum. When performing the analysis on GC-MS. was found compounds as terpenes, phenolics and organic acids, as the following: isoeugenol, catechol, humulene in I. ulei; limonene, geranic acid, neric acid, homovanillil alcohol in D. hirsute; phenol. 2.4-bis (1.1-dimethylethyl), α ionone in *T. obovatum* and phytol in each.

Index Terms— Allelopathy, Iryanthera, Theobroma, Duroia, amazonian species

I. INTRODUCTION

Medicinal plants are becoming integral components of many subsistent farming systems in most developing nations, due to the increasing awareness of human needs for wild indigenous plants as herbal remedies. Contrary to the acclaimed curative effects of several groups of plant's secondary metabolites, accumulation of these organic components in the soil negatively affect seed germination and seedling growth of other vegetations through a phenomenon called allelopathy [1].

Allelopathy was defined as the process in which a plant off the environment, one or more chemical compounds (allelochemicals), that inhibit the growth of other plants that live in the same habitat or in a nearby habitat[2]. Allelopathic interactions are mediated by secondary metabolites released from the donor plants in environment and influence growth and development in natural and agro-ecosystems. Allelochemicals phytotoxic effects are called 'allelochemical stress' [3]. Most of the allelochemicals are actually identified as coumarins, tannins, flavonoids, terpenes and some alkaloids, steroids and quinones [4] and directly affects many physiological and biochemical reactions and thereby, influence the growth and development of plants. The allelochemicals reduces the cell division and have several phytotoxic effects. For example, ferulic acid (It is found in plant cell) stress on plant roots, reduces the water use, inhibits foliar expansion and root elongation, reduces rates of photosynthesis and inhibits nutrient uptake [3]. The phytotoxicity of several Eucalyptus, is due to the presence of various compounds in their essential oils, such as α -pinene, 1, 8- cineol, citronella, citronellyl acetate, limonene, linalol, γ -terpinene, *allo*-ocimene and aromadendrene [5]. Similary at Carex distachya Desf, were identified flavonids and stilbenoids which possessed potencial alleopatic, among these were found pallidol and tricin between others [6]. Arctotis arctotoides showed high allelopatic activity and their chemical composition reported the presence of phenolics, sesquiterpene, monoterpene, coumarins, alkaloids, 1, 8-cineole and limonene in the essential oils of the two plant's parts [1].

In plants, allelochemicals can be present in the leaves, bark, roots, root exudates, flowers, and fruits. These toxins can affect a target species in a number of ways. Many of these have more effects on seed germination than on the growth and viability of adult plants. In fact, catechin from Centrea maculosa inhibits seed germination in plant species whose seedlings are generally tolerant of its phytotoxic effects seed germination in Pinus laricio is inhibited by several phenolic compounds from the soils around P. laricio and Fagus sylvatica trees. This inhibition has been attributed to a disruption of the activity of metabolic enzymes that are involved in glycolysis and the oxidative pentose phosphate pathway (OPPP), which takes substrates from glycolysis and feeds its products back into glycolysis. Several of these phenolic compounds, such as vanillic, p-coumeric, p-hydroxybenzoic and protocatechuic acid, tested alone and in combinations, were able to inhibit the enzymatic activity of all or several of the enzymes monitored. This suggests that the decrease in enzymatic activity is a secondary effect of these compounds, which might be caused by general protein damage leading to decreased enzymatic activity. Some allelochemicals compounds are thought to interact with the mitochondrial membrane and to impair mitochondrial respiration directly. The monoterpenes camphor, apinene, and limonene all strongly affected the respiratory activity of soybean radicular hypocotyl mitochondria, but apparently have different modes of action [7].

Allelopathy can also be a problem when non-native plant species threatens biodiversity and ecosystem stability This process is responsible for the decline in native species richness and the extinction of certain species of changes in the

V. Sotero: Research Coordinator of Foundation for the Sustainable Amazonian in Lowland (FUNDESAB), Iquitos-Peru. Telf. 51-65-22-5266, P. Suarez, J. E. Vela and D. García de Sotero, Research of National University of Peruvian Amazon (UNAP). Iquitos – Peru.

Y. Fujii. Research of University of Agriculture and Technology. Fuchu. Tokyo 183-8509 Japan.

relationship between soil microorganisms, changes in the availability of soil nitrogen and other nutrients and changes in soil characteristics [8].

There are many studies focusing on the effects of alleopathy on agroecsystems and on their explotation in agriculture. In sustentable agriculture, the major threat and extremally challenging task is weed control. Weed management is an important part of the following reducing yield crop seeds contamination with weed seeds as well as limiting the buildup of the weed seed bank in the soil. It has recently been suggested in several papers, that allelopathy holds great prospects for finding an alternative strategy for weed mangament whereby by reliance on traditional herbicides in crop production can be reduced as the leaves of sunflower (*Helianthus annuus*) [9], and the hairy vetch (*Vicia villosa* Roth) residue [10].

In this study it was explored three metanolic extracts by Gas chromatography–Mass spectrometry (GC-MS) after the preliminar alleopatic evaluation of 83 plants form the Peruvian amazon: *Iryantera ulei, Duroia hirsuta* and *Theobroma cacao*.

II. MATERIAL AND METHODS

Leaves of 83 plants at good situation, from The Botanical Garden of IIAP in Allpahuayo-Mishana Reserve – Loreto-Peru, were collected the 2010 and 2011 years, they are listed at Table 1, This plants were previously identified by Vasquez & Phillips [11] whose vouchers were deposited in the Herbaria of at National University of Peruvian Amazon (AMAZ) and Missouri Botanical Garden.

Plant materials were washed with distilled water and lixiviated with methanol at the proportion of 5 g in 100 ml of methanol for 15 days, this product is filtered and the product utilized for the previous allelophatic evaluation. With the methanolic extract were realized the bioassays to evaluate their effect on germinated seeds of Lattuca sativa [12]. It was impregnated at filter paper (Whatman Nº 1 and 2.7 cm of diameter) and collocated in Petri dishes with 100 µl of the solution to study at concentrations of 10; 3; 1; 0.3 y 0.1 mg/ml. after the evaporation of methanol they were added with 700 µl of distilled water and there was placed five pre germinated seeds of L. sativa by 52 hrs (20°C in dark). Every experiment was realized by triplicate and for the blank; after of this was measurement the length of the roots of every seed and compared with the blank seeds. For the bioassay of the fractions it was similar but only was utilizing 100 µl of everyone.

Extracts dried of the six species with higher allelophatic value, were fractionates in chromatographic column, utilizing as mobile phase methanol and as stationary silica gel N° 100, the elution was at 20 drops/min and the fractions collected in assay tubes getting's average 100 fractions. This fractions were analyzed at thin layer with silica gel 60 F_{254} (6.7 x 6.2 cm) utilizing as mobile phase methanol, getting of this manner about 10 fractions with molecules with similar Rf, and this were submitted to allelophatic evaluation. Analysis of the fractions with allelophatic activity which were in average of three, were analyzed at Bruker-Scion TQ gas chromatograph coupled with spectrophotometer of mass, utilizing a capillary column of silica BR-5ms of 15 m. ID : 0.25 mµm, with the electrons impact at 70 eV. Gas Helium at constant flux of 1

ml/min and a injection volume of 0.5 and split mode, temperature of 250 °C, Temperature of oven programmed to 40 °C increasing at 8 °C /min until 200°C, spectrums of mass were got at a 70 eV and the fragments since 35 a 500 m/z. The identification was realized with the NIST library.

III. RESULTS AND DISCUSSION

Accord Table 2, exist 17 species which presented hormesis and the rest have since moderated to high alleopatic activity, and six with higher allelophatic activity, which are presented in the Table 3. They are Chrysochlanys membranaceae (Code 11037), Vitrex triflora (Code 23075) and Miconia cazaletti (Code.24006), Theobroma obovatum (Code 20045) and Iryantera ulei (Code 11001), which EC_{50} are lower than 1.40 mg/ml. After the column chromatographic fractionation eluted with methanol and evaluated the similar R_f substances by thin layer chromatography were collected between 8 to 15 fractions (Table 4). These fractions were subjected to analysis of allelopathy lines by the method indicated above and from these three species that maintained high activity were selected, these were the 11001. 20045 and 23010, as it is showed at Table 5, where besides show the compounds obtained by CG-MS, according to each specie.

a) Specie 11001 (*Iryantera ulei* Warb) belongs to Myristicaceae family, and the species of the Iryanthera genus are used as psychoactive [13]. In this species include the phenolics [(phenol-2-methoxy-4-1(1-propenyl) (isoeugenol)), catechol], and terpenes (ylangene, humulene, cubenol, **a acorenol, t-muurolol, spathuleno, phytol**). Cubenol terpene also was found in the essential oil of erva-de-jabuti (*Peperomia circinnata* Link var. *circinnata*, Piperaceae) [14].

Specie 23010 (Duroia hirsuta (Poepp.) K.Schum), It b) has been studied because is known where a group of this specie grows, a zone lacking of vegetation is formed in the Amazon forest and it is known as Devil's gardenc and as result of alleopathy. One study indicates that ant Myrmelachista schumanni, which nests in D. hirsuta stems, creates Devil's gardens by poisoning all plants except its host plants with formic acid [15],. The principal compounds encountered were iridoid lactone and a flavonol [16], in this study have been encountered acids or its esters (methyl salicilate, linoleico acid ethyl ester, 9, 12, 15-octadecatrienoic acid. methyl ester, n-hexadecanoic acid). Methyl salicilate, terpenes (limonene, geranic acid, neric acid, phytol), organic acids (geranic acid, neric acid), and phenolics (homovanillil alcohol, 1, 3-benzenediol, 4-propyl. In the same way, phenolic compost, as homovanillil alcohol, Specie 20045 (Theobroma obovatum Klotsch), presents organic acids or its esters (oleic, hexadecanoic, octadecatrienoic, hexanoic, 12-octadecadienoic acid. methyl ester, butanoic acid, 3-hexenyl ester. [1, 1'-bicyclopropyl]-2-octanoic acid. 2-hexyl-methyl ester), phenolics (phenol 2, 4-bis (1, 1-dimethylethyl, phenol, 4-pentyl) an ionone (α -ionone), and mequinol. The phytol, an acyclic terpene, which has been found in the three species studied and considered a marker of Leucas aspera (Lamiaceae), a plant of traditional medicine of India [17].

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-2, February 2016

IV. CONCLUSIONES

Analyses of secondary metabolite compounds, it is necessary to identify the active ingredients present in many plant species, especially using more advanced techniques. Therefore the analysis by GC-MS, it is very useful to identify the methanol extracts of plants

ACKNOWLEDGMENTS

To the Research Institute of Peruvian Amazon (IIAP) and National Institute for Environmental Sciences (NIAES) for the financial and technical support for this study.

REFERENCES

- Badmus, A., Afolayan, Alleopathic potential of Arctotis arctotoides (L.f.) O. Hoffm aquops extreacts on the germination andseedling growth of some vegetavles. African Journal of Biotechnology. 11: 10711-10716 (2012).
- [2] Molish H. Der Einfluss einer Pflanze auf die andere-Allelopathie, Gustav, Fischer, Verlag and Jena. (1937).
- [3] Hussain, S., Siddiqui, SU, Khalid, S, Jamal A, Qayyum, A, Ahmad, Z. Allelopathic potential of Senna (*Cassia angustifolia* Vahl.) on germination and seedling characters of some major cereal crops and their associated weeds. Pak. J. Bot., 39: 1145-1153 (2007).
- [4] Phippen, W.B., Simon, J.E. Anthocyanin inheritance and instability in purple basil (*Ocimum basilicum* L.). Journal of Heredity. 91:289–296 (2000).
- [5] Gonzales Castillo, L. Efecto del aceite esencial y extractos acuosos de Eucalyphus gomphocephala, sobre la germinación y crecimiento de arvensis. Tesina. Universitat Politecnica de Valencia. pp. 20-26 (2011).
- [6] Fiorentiono, A., D'Abrosca,B.,Pacifico, S., Izzo, A., Letizia, M.,Esposito, A.; Monacoi, P. Potential allelopatic effects of stilbenoids and flavonoids from leaves of Carex distachya Desf. Biochemical Systematics and Ecology. 36: 691–698 (2008)

- [7] Weir, L., Park. S., Vivanco, J. Biochemical and physiological mechanisms mediated by allelochemicals Current Opinion in Plant Biology.7:472–479 (2004).
- [8] Lorenzo, P.; Gonzales, L. Alelopatía: una característica ecofisiológica que favorece la capacidad invasora de las especies vegetales Ecosistemas 19: 79-91(2010).
- [9] Gawronska, H., Ciarka D., Bernat, W., Gawronski S.W. Sunflower desired allelopathic crop for sustainable and organic agriculture? In: Fujii Y., Hiradate S. (eds) New Concepts and Methodology in Allelopathy. Science Publishers, Inc. Enfield, NH, USA.:pp. 185-210.(2007).
- [10] Teasdale, J., Abdul-Baki, A., Park, Y., Rosecrance, R. The potential for alleopathy during decomposition of heavy vetch residue In: Fujii Y., Hiradate. S. (eds) New Concepts and Methodology in Allelopathy. Science Publishers, Inc. Enfield, NH, USA. pp. 211-225 (2007).
- [11] Vasquez, R.; Phillips, O. Allpahuayo: floristics, structure, and dynamics of a high-diversity forest in Amazonian Peru. Annals of the Missouri Botanical Garden, 87: 499-527 (2000).
- [12] Fujii, Y., Shibuya, T., Yasuda, T. Methods for screening allelopathic activities by using the logistic function (Richards' function) fitted to lettuce seed germination and growth curves. Weed Research, 35: 353-361 (1990).
- [13] Neill, D., Baker, H., Palacios, H., Zaruma, J. Plant resources of Amazonian Ecuador. Flora del Ecuador. Missouri: Missouri Botanical Garden. Second annual report. AID. Dirección Nacional Forestal, pp. 449-527 (1987).
- [14] Maia, J., Andrade, E. Database of the Amazon aromatic plants and their essential oils. Química Nova. 32: 595-622 (2009).
- [15] Frederickson, M., Greene, M., Gordon, D. Devil's gardens' bedevilled by ants. Nature. 437:498 (2005).
- [16] Aquino, R.D., Tommasi, N., Tapia, M., Lauro, M., Rastrelli, L. New 3-Methyoxyflavones, an Iridoid Lactone and a Flavonol from *Duroia hirsute*. Journal of Natural Products, 62: 560-562 (1999).
- [17] Basarkar, U.G. Phytol –A chemical constituent of *Leucas aspera* through HPTLC. American International Journal of Research in Formal, Applied & Natural Sciences. 14: 44-46 (2014)

Allelochemicals of Three Amazon Plants Identified by GC-MS

	2010 year		2011 year				
CODE	NAME	FAMILY	CODE	NAME	FAMILY		
6025	Socratea exorrhiza (Mart.) H. wendell	Arecaceae	6029	Miconia amazónica Triana	Melastomataceae		
6027	Astrocaryum macrocalyx Burret	Arecaceae	6042	Cecropia sciadophylla Mart	Urticaceae		
6073	Eschweilera coriácea (DC.)S.A. Mori	Lecythidaceae	9022	Iryanthera crassifolia A.C. Sm.	Myristicaceae		
6077	Isertia hypoleuca Benth	Rubiaceae	9079	Phytelephas macrocarpa Ruiz & Pav.	Arecaceae		
9006	Pentagonia macrophylla Benth	Rubiaceae	9091	Caryodendron orinocense H. Karst.	Euphorbiaceae		
9025	Diospyros tessmannii Hiern	Ebenaceae	10073	Guarea guentheri Harms.	Meliaceae		
9031	Calyptranthes plicata Mc Vaugh	Myrtaceae	23014	Warszewiczia coccínea (Vahl) Klotzsch.	Rubiaceae		
9032	<i>Tetrathylacium macrophyllum</i> Poepp & Endl	Salicaceae	23075	Vitex triflora Vahl	Lamiaceae		
9051	Rinorea lindeniana (Aubl.) Kuntae	Violaceae	24022	Tetrastylidium peruvianum Sleumer.	Olacaceae		
9076	Otoba parvifolia	Myristicaceae	24048	Pseudoxandra polyphleba (Diels) R. E. Fr.	Annonaceae		
10033	Iriartea deltoidea Ruiz & Pav.	Arecaceae	24108	Diospyros subrotata Hiern.	Ebenaceae		
10034	Rinorea guianensis	Violaceae	41024	Maquira calophylla (Poepp. & ENDL.)	Moraceae		
10060	Gloeospermum sphaerocarpum	Violaceae	41032	Neea macrophylla Poepp. & Endl.	Nyctaginaceae		
10090	Pouroma cecropiifolia	Urticaceae	41047	Croton cuneatus Klotzsch.	Euphorbiaceae		
10117	Cassipourea peruviana Alston	Rhizophoraceae	59058	Cecropia engleriana Snethl.	Urticaceae		
11001	Iryanthera ulei Warb.	Myristicaceae	63096	Matisia bracteolosa Ducke.	Malvaceae		
11012	Neea verticillata Ruiz y Pav.	Nyctaginaceae	69009	Theobroma speciosum Willd.	Sterculiaceae		
11035	Allophylus loretensis	Sapindaceae	69034	Zygia basijuga (Ducke) Barneby & J. W. grimes.	Fabaceae		
11037	Chrysochlamys membranácea Pland & Triana	Clusiaceae	69036	Annona excellens R. E. Fr.	Annonaceae		
11078	Cestrum megalophyllum Dunal	Solanaceae	69043	Protium ferrugineum (Engl.) Engl.	Burseraceae		
11082	Euterpe precatoria Mart.	Arecaceae	69072	Leonia cymosa Mart.	Violaceae		
11097	Pourouma guianensis Poeep. & Endl.	Urticaceae	76055	Nectandra cissiflora Nees.	Lauraceae		
20005	Neea divaricata Poepp. & Endl.	Nyctaginaceae	77003	Micropholis egensis (A.D.C.) Pierre	Sapotaceae		
20029	Crepidospermum goudotianum (Tul.)	Burseraceae	77015	Matisia ochrocalyx K. schum	Malvaceae		
20045	Theobroma obovatum Klotsch ex Bernoulli	Malvaceae	77073	Banara nítida Spruce Ex Berth	Salicaceae		
20104	Lacistema aggregatum (Bergius) Rusby	Lacistemataceae	78014	Hirtella racemosa var racemosa Baardseth	Chrysobalanaceae		
20107	Guatteria puncticulata R.E.Fr	Annonaceae	78049	Leonia glycycarpa Ruiz & Pav. (var glycicarpa)	Violaceae		
20122	Pouteria cuspidata (A.D.C.) Baehni	Sapotaceae	78063	Leonia crassa	Violaceae		
20125	Huertea glandulosa Ruiz & Pav.	Staphyleaceae	79002	Unonopsis spectabilis Diels	Annonaceae		
23010	Duroia hirsuta (Poepp.) k. Schum	Rubiaceae	79006	Matisia malacocalyx	Malvaceae		
24006	Miconia cazaletti Wurdack	Melastomataceae	79011	Macrolobium limbatum Spruce ex Benth. Var limbastum	Fabaceae		
24047	Guarea gomma Pulle	Meliaceae	79013	Inga cf. Brachyrhachis Harms.	Fabaceae		
41081	Iryanthera laevis Markgr.	Myristicaceae	79018	Trigynaea duckei (R. E. Fr.) R. E. Fr.	Annonaceae		
41082	Siparuna cristata (Peopp. & Endl.)	Monimiaceae	79089	Tabernaemontana sanano	Apocynaceae		
42070	Unonopsis peruviana R.E.Fr	Annonaceae	80028	Cecropia membranácea Trécul.	Urticaceae		
59042	Pourouma minor Benoist	Urticaceae					
59044	Naucleopsis naga Pitter	Moraceae					
59045	Pseudolmedia laevis (Ruiz y Pav.) J	Moraceae					
59087	Guapira noxia (Netto) Lundl	Nyctaginaceae					
59141	Lindackeria paludosa breviflora Croat	Achariaceae					
60015	Cathedra acuminata (Benth.) Miers	Olacaceae					
60049	Turpinia occidentalis breviflora Croat	Staphyleaceae					
60064	Siparuna decipiens A.dc	Monimiaceae					
60074	Rinorea flavescens (Aubl.) Kuntae	Violaceae					
60112	Apeiba aspera (Aubl.)	Tiliaceae					
60141	Guarea pterorhachis Harms	Meliaceae					
60149	Pouteria torta tuberculata (Steumer)	Sapotaceae					
60159	Siparuna bífida A.dc.	Monimiaceae					

Table 1. List of species selected and collected at 2010 and 2011	years

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-2, February 2016

	Species Code															
mg/mL	6025	6027	6073	6077	9006	9025	9031	9032	9051	9076	10033	10034	10060	10090	10117	11001
0,1	-11	-11	20	16	-11	-9	-13	-12	-15	11	0	3	7	7	3	40
0,3	-17	-3	11	20	-2	3	-15	4	-18	13	0	15	27	17	8	35
1	-13	-10	13	40	2	21	-22	-10	-5	7	-2	21	32	6	19	44
3	-18	-3	40	50	3	47	-15	-12	-1	36	9	41	63	38	50	75
10	14	5	80	81	9	63	-3	-12	15	86	4	70	83	55	68	81
mg/ml	11012	11035	11037	11078	11082	11097	20005	20029	20045	20104	20107	20122	20125	23010	24006	24047
0,1	15	-11	31	13	-1	3	-6	23	7	9	-31	24	4	11	58	19
0,3	21	2	51	-2	8	14	1	3	33	16	3	21	1	35	32	20
1	6	13	90	17	-4	13	11	23	51	10	-26	26	19	45	88	43
3	33	19	93	16	12	32	44	36	64	23	9	44	43	63	90	63
10	43	13	94	7	25	53	64	35	80	37	78	80	51	82	93	62
mg/ml	41081	41082	42070	59042	59044	59045	59087	59141	60015	60049	60064	60074	60112	60141	60149	60159
0,1	10	-1	3	-9	-11	-19	-11	-9	-10	-14	-26	-17	-16	-	4	-16
0,3	27	8	-8	-5	7	15	1	-14	6	0	-1	-23	-9	-	-15	-5
1	22	-4	14	6	-5	26	-8	-11	23	-11	-11	-19	-1	32	-3	10
3	51	12	9	-3	4	43	7	13	46	-1	-1	-7	-23	47	-9	8
10	81	15	10	19	10	43	10	17	54	3	21	4	3	-	9	17
mg/mL	6029	6042	9022	9079	9091	10073	23014	23075	24022	24048	24108	41024	41032	41047	59058	63096
0,1	16	7	-30	-6	-6	-20	1	37	19	28	8	9	-4	-3	12	9
0,3	13	10	-25	-7	-22	-35	22	48	14	-1	7	-12	1	-6	15	15
1	14	12	-7	-2	-21	-10	26	64	12	1	11	2	-6	0	6	12
3	34	-6	-20	17	-22	-16	25	65	16	9	9	6	-8	11	14	18
10	60	15	10	36	2	44	42	65	37	55	20	-11	6	9	27	19
mg/mL	69009	69034	69036	69043	69072	76055	77003	77015	77073	78014	78049	78063	79002	79006	79011	79013
0,1	16	7	6	21	7	4	-2	16	22	6	12	6	10	0	12	3
0,3	15	7	13	11	15	7	3	9	20	13	11	13	8	8	-4	9
1	20	6	10	16	20	23	27	6	16	30	2	-2	-42	6	-8	-8
3	10	17	28	15	17	22	12	26	12	20	20	11	13	11	15	-1
10	21	20	17	44	19	22	30	68	23	32	3	6	-19	53	19	12
mg/mL	79018	79089	80028													
0,1	-22	-2	13													
0,3	-4	-19	9													
1	-16	-19	20													
3	-12	-5	10													
10	33	-8	17													

Table 2. Inhibitory percentage of the root of Lattuca sativa at different concentrations of the extracts of 83 species evaluated

Table 3. Six species evaluated with major alellophatic activity

Nº	Code	Family	Genus	Specific epithet	EC ₅₀
1	11037	Clusiaceae	Chrysochlanys	membranaceae	0.29
2	23075	Lamiaceae	Vitex	triflora	0.35
3	24006	Melastomataceae	Miconia	cazaletti	0.45
4	20045	Sterculiaceae	Theobroma	obovatum	0.90
5	11001	Myristicaceae	Iryanthera	ulei	1.30
6	23010	Rubiaceae	Duroia	hirsuta	1.40

Allelochemicals of Three Amazon Plants Identified by GC-MS

Fraction	Spècies									
	11001	11037	20045	23010	23075	24006				
F1	0- 1:50 h	0-1:20 h	0-1:40 h	0- 1:30 h	1-10:40h	0-1:50 h				
F2	1:50-2:20 h		1:40-2:20h	1:30-2:10 h	1:40-2:00 h	1:50-2:20 h				
F3	2:20-3:30h	2:20-3:20h	2:20-2:40 h	2:10- 2:30 h	2:00-2:10 h	2:20-3: 30 h				
F4	3:30-4:40 h	3:20-3:40h	2:40-3:40h	2:30-3:10h	2:10- 2:40h	3:40-4:40 h				
F5	4:40-5:20 h	3:40-4:20 h	3:10-3:30h	3:10-4:10 h	2:40-3:00 h	4:40-5:20h				
F6	5:20-6:20 h	4:20-4:50h	3:10 h-4:10 h	4:10 h- 4:50 h	3:00h- 4:10 h	5:20 h-6:20 h				
F7	6:20-6:50 h	4:50- 5:20 h	4:10-5:10 h	4:50-5:20 h	4:10 h-4:50 h	6:20 h-6:50 h				
F8	6:50-9:50 h	5:20 h-6:30 h	5:10- 7:10 h	5:20-6:20 h	4:50-5:40 h	6:50 h-9:50h				
F9		6:30-7:20 h	7:10- 9:10 h	6:20 h- 7:30 h	5:40- 6:50 h					
F10		7:20-8:20 h		7:30- 7:50 h	6:50 h-7:50 h					
F11		8:20-9:50 h		7:50-8:30:h	7:50 h-8:50 h					
F12		9:50-10:20h		8:30 h-9:40 h	8:50-10:20 h					
F13		10:20-11:40 h			10:20 h-11:00 h					
F14		11:40-12:40 h			11:00- 11:30 h					
F15					11:20-12:10 h					

Table 4. Number of methanolic fractions and retention time in every specie and recolected according to the results of thin layer chromatography

Table 5. Molecules probable encountered at the fractions with allelopathic activity analyzed with CG –MS.

Retention time. min	Compounds	Retentio n time. min	Compounds	Retentio n time. min	Compounds					
	Specie 11001 (Iryantera ulei Warb)									
	F2		F3		F4					
14.905	Undecane. 3.6-dimethyl	5.335	Ethanol. 2-butoxy	5.321	Ethanol. 2-butoxy-					
16.607	1H-Indene. 1-methylene-	6.445	Propanedioic acid. dimethyl ester	21.137	Caryophyllene					
17.3	Decane.2.4.6-trimethyl	17.22	Catechol	21.332	Γelemene					
21.118	β- ylangene	19.285 20.317	2-methoxy-4-vinylphenol Aylangene	21.605 21.722	Phenol. 2-methoxy-4-(1-propenyl)- Humulene					
21.508	α-ylangene	20.921	Phenol. 2-methoxy-4-(1-propenyl)	22.131	β- copaene					
21.605	Phenol. 2-methoxy-4-(1-propenyl)	21.135	αylangene	22.364	Γelemene					
21.703	Humulene	21.447	α-guaiene	22.89	Benzenepropanoic acid. 2-methoxymethyl ester C ₁₁ H ₁₄ O ₃					
22.501	β-copaene	22.148	βcopaene	23.572	(-)-Spathulenol					
22.677	epi-cubenol	22.362	Γelemene	23.747	Alloaromadendrene					
23.3	Γ-elemene	22.733	Naphtalene. 1. 2. 3. 5. 6. 8a-hexahydro-4.7-dimethyl-1-(1-m ethylethyl) (1S-cis)	23.903	Guaiol					
23.572	(-)-Spathulenol	23.57	(-)-Spathulenol	24.156	Cubenol					
23.748	αacorenol	23.921	Ledol	24.585	Tcadinol					
24.313	12.15-Octadecadienoic acid. methyl ester	24.154	Cubenol	24.721	Acadinol					
24.469	Bicyclo[4.4.9]dec-1_ene. 2-isopropyl-5-methyl-9-meth ylene	24.719	Acadinol	27.896	Alloaromadendrene oxide-(2)					
24.703	T-muurolol	24.914	Tcadinol	30.545	9.12.15-octadecatrienoic acid.					
25.775	Isoaromadendrene epoxide	25.615	Isoaromadendrene epoxide	30.779	Phytol					
27.275	1-Heptatriacotanol	28.4	Benzenepropanoic acid.3.5-bis(1.1-dimethylethyl)-4-h	31.169	2-Methyl-Z.Z-3.13-octadecadienol					
27.301	Pregan-20-one. 2-hydroxy-5.6-epoxy15 methy	30.816	Phytol	33.409	3-Amino-4-[4-hydroxyphenyl]buta nool					
28.391	Benzenepropanoic acid.3.5-bis(1.1-dimethylethy l)-4-hydroxymethyl ester			34.266	Benzene. 1.1´-(1.2-ehtanediyl)bis[2.3.4.5.6-p entamethyl					

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-2, February 2016

28.411	Hexadecanoic acid. methyl ester								
28.917	n-Hexadecanoic acid								
30.534	9.12.15-Octadecatrienoic acid. methyl ester. (Z.Z.Z)								
30.748	Phytol								
		Spe	ecie 23010 (Duroia hirsuta (Poepp.) K	. Schum)					
	F2		F3		F4				
16.925	Methyl saliciylate	16.939	Methyl salicilate	16.925	Methyl salicylate				
30.715	Phytol	20.192	Geranic acid	20.177	Neric acid				
31.3	R-liimonene	23.211	Homovanillil alcohol	23.177	Homovanillil alcoholo				
		24.477	1.3-Benzenediol. 4-propyl	30.481	9.12-Octadecadienoic acid. methyl ester. (E.E)				
		30.732	Phytol	31.069	Linoleic acid ethyl ester				
		31.083	9.12.15-ctadecatrienoic acid. methyl ester. (Z.Z.Z)						
	F5	F6							
16.928	Methyl salicylate	28.415	Hexadecanoic acid. methyl ester						
28.868	n-Hexadecanoic acid	28.882	n-Hexadecanoic acid						
30.718	Phytol	30.499	9.12.15-Octadecatrienoic acid. methyl ester. (Z.Z.Z)						
31.069	Linoleic acid ethyl ester	30.85	2-Hydroxyhexadecyl butanoate						
	Specie 20045 (Theobroma obovatum Klotsch)								
	F4		F5		F6				
23.917	9-octadecene	11.564	Hexanoic acid	16.603	Naphthalene				
26.293	Oleic acid	14.261	Mequinol	21.239	A-ionone				
26.741	S-eicosene R-limonene	16.628	Azulene butanoic acid 3-bexenvl ester F	22.622	Methyl tetradecanoate				
27.871	2-Methyl-Z.Z-3.13-octadecad ienol	17.057	1- a - terpineol	27.26	9-Tetradecene-1-ol. acetate. (Z)				
29	n-Hexadecanoic acid	17.641	Benzaldehyde 2-methyl						
30.481	9.12-Octadecadienoic acid. methyl ester	21.225	A-ionone						
30.831	Phytol	25.627	Octadecanal						
31.182	9.12.15-Octadecatrienoic acid. (Z.Z.Z)-	23.328	Oleic acid						
33.403	Phenol. 4-pentyl	27.127	Cyclopentanetridecanoic acid. methyl ester						
34.065	Benzene. 1.1-(1.2-ethanediyl)bis [2.3.4.5.6-pentamethyl	27.244	[1.1´-Bicyclopropyl]-2-octanoic acid. 2´-hexyl methyl ester						
		27.828	3.7.11.15-Tetramethyl-2-hexadece n-1-ol						
		28.062	7-Hexadecenoic acid. methyl ester. (Z)						
			8 11 14-Ficosatrienoic acid						
		29.795	(Z.Z.Z)-						